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Abstract

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between
weighted function spaces of Sobolev—Hardy—Besov type with polynomials weights. The exact esti-
mates are proved in almost all cases.
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Approximation numbers of Sobolev embeddings between functions spaces of Sobolev—
Besov—Hardy type have been studied in recent years by several authors. The approximation
numbers of Sobolev embeddings of function spaces defined on bounded domains were
studied by Edmunds and Triebel; cf. [6-8]. Later some of their estimates were improved
by Caetano; cf. [3]. For weighted function spaces the counterpart of the theory was studied
by Mynbaev and Otel’baev [20] in the case of fractional Sobolev spaces, and then more
generally by Haroske, cf. [11], and by Caetano, cf. [3]. Some later results are described in
[12]. In contrast to the function spaces on bounded domains, where the exact estimates were
proved in almost all cases, the estimates for weighted spaces are less final. The importance
of the asymptotic behavior of approximation and entropy numbers of Sobolev embeddings
for the spectral theory of operators is discussed in [8]; cf. also [5,15].
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The aim of this paper is to prove the exact estimates of the asymptotic behavior of the
approximation numbers in the so-called not-limiting case. We improve some earlier results
obtained by Haroske and Caetano. However, the method we use is quite different from that
one used ifi11,3]; therefore we present further how it works in all cases. It is essentially the
same method that was used for investigation of asymptotic behavior of entropy numbers of
the embeddings; cf. [16].

Following Haroske [11] and Caetano [3], we consider the spaces with polynomial
weightswy(x) = (1 + [x|9*2, o > 0. The Sobolev embeddings of weighted Besov
spaces,

B go(RY wa) = By (RY), (1)
—00 < 51 < 5o < 00, 1< po< p1<oo, 1<q0. g1 < 00, 2

hold if & = sg — s1 — al(p—l0 - %) > 0. The not-limiting case means that~ o. We also
consider the casg1 < po.
We say that: ~ b if there exists a constant> 0 (independent of relevant parameters)

such that
cla <b<ca.
Let a; bek-approximation numbers of the embeddings (1). We prove that
ax ~ k7%, 3)

wherex > 0 is a positive constant depending p#\ p1, so, s1, ando; cf. Theoreml7. As
a consequence we can prove the exact estimates of approximation numbers of the Sobolev
embeddings on bounded™® domain if 1< pg < 2 < p1<oo andd = —4___ This

i ) min(pg, p1)
seems to be the first proof of the estimates.
We get also some estimates in the limiting case J, but in this case our estimates are
not exact. Namely, we get

ck™* < ap < Cok™*(1+ logk)*Hite, e> 0. (4)

The paper is organized as follows. In Sectibrwe collect definitions and prelimi-
nary results needed later. In Section 2 we regard the approximation numbers of embed-
dings of related sequence spaces. The main result is formulated and proved in the last
section.

1. Preliminaries
1.1. Approximation numbers

We recall the definitions of approximation numbers and corresponding operator ideal
quasi-norms, which will be used widely in the paper. We refer to books by Carl and Stephani
[4] and Pietsch [21] for details, proofs, and more information.

Let Bp and B1 be two complex Banach spaces andllet Bp — B1 be a bounded linear
operator.
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Definition 1. Thekth approximation number, (T') of the operatofl : By — Bj is the
infimum of all numberg| T — A||; whereA runs over the collection of all continuous linear
operatorsA : Bp — Bj of rank smaller thak.

Approximation numberg, (T) form a decreasing sequence with(7) = ||T'||. If the
sequence converges to zero then the opefaisrcompact. The opposite implication is
not true. It may happen that lim. o, ax(T) > 0 for some compact if B; fails to have
the approximation property. The approximation numbers have in particular the following
properties:

— (additivity) ap4x—1(T1 + T2) < ar(T1) + a,(T2),
— (multiplicativity) a,+x—1(T172) < ax(T1)a,(T2),
— (rank propertyy (T) = 0 & rank(T) < k.

For a positive real numberwe put

L@ (T) := supk'/* ay(T). )
keN

The expressiomf&o(T) is an example of aoperator ideal quasi-norm. This means in

particular that there exists a numbekQ <1 such that

Q
LN 2T <) LTl ©)
j j

for any sequence of operatdfg : Bp — By, cf. Konig[15, 1.c.5].

The following lemma concerning approximation numbers of embeddings of finite-
dimensional complek,,-spaces can be found in Edmund’s and Triebel’s book [8, Corollary
3.2.3], but itis essentially due to Gluskin [9]; cf. also [20].

Lemma 2. LetN € N andk < &.
(i) f 1< po<p1<2o0r2< po< p1<oothen
(4. N NY o
a(id: e 1> €N ) ~ 1.
(i) f1<po <2< p1<oo, (po, p1) # (1,00) then
i . pN N : 1/t7,—1/2
ai(id: £ 1> €3 ) ~ min (1, NYk42),

1

1
wherez = — .,
t min(pg. p1)

For p1 < po the corresponding approximation numbers were calculated by Pi@kch
p. 109].

Lemma 3. Let1< p1 < po<oo. Then

ar(id: e e ) = (N—k+)YVP =1 N
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1.2. Weighted function spaces

We assume that the reader is acquainted with the definitions and basic properties of Besov
and Triebel-Lizorkin spaces. Triebel's bodR$,27] are the classical references here, but
one can also consult [8] and many other books. In this section we recall a definition and a
few of the properties of weighted function spaces.

In what follows we will be interested in the function spaces with polynomial weights

wy(x) = (1+xP)?,  a>o0 @)

Definition 4. Let 1< p<oo, 1< g <00, ands € R. Let w, be the above weight function.
Then we put

B} (R, w) = {f e S'(RY : |If1B) , (R, w)|| = || fw] B} , (R < oo},

s d dy . s d _ s d
F, (R w) = {f e S'RY) : IfIF, ,(RY, w)| = || fwlF,, ,(RD] < 00},
for p # oo in the F-case.

Remark 5. It follows immediately from the definition that an operajor— wf is an iso-
morphic mapping fronB; , (R?, w) onto B3 , (R?) and fromF  (R?, w) onto Fs  (R).

Remark 6. There are different ways to introduce weighted function spaces; cf., e.g., Triebel
[26], Lofstrdm [18], Schmeisser and Triebel [24], Buy et al. [2], Edmunds and Triebel [8], or
Rychkov [23]. In the cited works the authors start with a Fourier-analytic definition. Under
certain extra conditions on the weights these different approaches coincide; cf. [8,18,23,
24].

It follows from the definition of the spaces that in studying embeddings between weighted
spaces it is sufficient to consider embeddings between weighted and unweighted spaces; cf.
Remark 5. The following characterization of the compactness of embeddings was proved
in [16]; cf. also [13].

Proposition 7. Let1< po, p1 <00, 1< g0, g1 <00, —00 < 51 < 50 < 00, anda > 0. Let
5 =s0— 51— % + %. The embedding)? (R, wy) = B)L ., (R?) is compact if and
only if min(e, §) > d max(+ — L, 0).

Pl PO

The similar theorem holds also fé#, ,-spaces. The symbeb will be used for contin-
uous embedding.

1.3. Wavelet characterizations of weighted Besov spaces

Wavelet bases in Besov spaces are a well-developed concept. In the case of unweighted
spaces we refer to the monographs by Md$8j and Wojtaszczyk [29] and the article by
Bourdaud [1] Here we are interested in the wavelet bases in the weighted cases. We quote
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the wavelet characterization of weighted Besov spaces proyééjinbut cf. also [25] and
[22], where more general weights are considered.

First of all we need to fix some notations. Bywe denote the set of natural numbers, by
No the setN U {0}, and byz? the set of all lattice points i having integer components.

Let ¢ be an orthogonal scaling function éhwith compact support and of sufficiently
high regularity. Let) be an associated wavelet. Then the tensor product ansatz yields a
scaling functiong and associated wavelets, ..., ¥,_4, all defined now orR?. We
assume that

dbec™ and  supph C [—Na, Na
for certain natural number§; andN». This implies that
¢, y,ec™M  and  suppb, suppy;C[—Naz, N3l¢, i=1,....2 —1. (8)
We shall use the standard abbreviations
G ) =212 p@x —0) and ) =292y x — 0. 9)
Apart from function spaces with weights, we introduce sequence spaces with weights. If

w is a given continuous weight function ther(j, £) = w(27/¢) for j € Np and¢ ze .
Let 1< p, g <oo. We put

K; (2‘/‘Y€1)(w)) =1 = {/ﬂui’j’(}i,]"g : )Li,j,e eC,

q/p\ 4

00 2d_1
= 14165251 [ Y2270 | 32 3 Vw017 <00
j=0 i=1 ypezd
(10)
and
Eq <2jsﬁ[,(w)) =1l= {/lj,g}j,g . /1.,',[ € (C,
~ a/p\ Y1
I )u|zq(2ffe,,(w))|| =D 2 [ 3wyl <ool. (1)
j=0 te7?

For smooth weights and compactly supported wavelets it makes sense to consider the
Fourier-wavelet coefficients of functions ¢ L ,(w) with respect to such an orthonormal
basis. The following theorem was proved 6], but one can also consult [25].

Theorem 8. Let ¢ be a scaling function and let;, i = 1,...,2/ — 1; be the corre-
sponding wavelets satisfyir{§). Let 1< p, g <oo and let0 < s < N1. Then a function
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f € Lp(R?, w,) belongs toBS, , (RY, w,), o > 0,if and only if

1/p
1FIBS ,(RE w)* = | D7 1(f doe) wa®)]”
te7
2 1 [ a/p) Y4
. 1 1 .
S 2D [ S g @) <00, (12)
i=1 | j=0 ¢ez

Furthermore,|| f |B;,q(Rd, w,)||* may be used as an equivalent norm in

BS (R, wy).
Remark 9. There is another way of discretizing of the function spaces useful for investi-
gation of properties of entropy and approximation numbers of Sobolev embeddings. This
is so-called quarkonial decomposition. The method was developed by H. TrigB8l.in
2. Approximation numbers of embeddings of some sequence spaces

We start with the following lemma which is simply a corollary of Lemma 2; cf. also [3].

Lemma 10. Let1< po < 2 < p1<00, (po, p1) # (1,00),andN = 1,2,3,... . Then
there is a positive constant C independent of N and k such that

1 if kSN,
a(id: e > e ) < € { NYIZ it N2 < k<N, (13)
0 if k>N,

where} = max(p—ll, %)

Proof. The last estimate, fdr > N, is obvious. To prove the others we regard the diagram

N S AN
e ——— 4

idl J'Id

N T AN

Em < gm
where

S(}l,/LN) = (}vl,...,iN,O,...,O) and
T(/’Ll"-"AAN) = (;“17"'5/11\/)'

Both the normg S|| and| 7' || are equal to 1; therefote (id) < ax (Id). Now the result follows
from Lemma2. O
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Proposition 11. Supposd < po < 2 < p1<09, (po, p1) # (1,00) andé # a. We put

min(ed) , 1 _ 1 ; ; d
i} T2 4+ 3 WRGEPD if min(e, ) > MNP (14)
min(x.8) = Min(pg. p1) PR _d
y > if min(e, §) < A
Then
ax (id  00(2000 o () > eql(em)) ~ k" (15)

Proof. Step 1. Preparations. We put
Bo = £4(27%0(wy))  and By = £y (p).
Let
A={A=Uje): 7Lee€C, jeNg tez.
Let/;;  No x Z¢ be such that
Lio={G,0: [I<2}, jeNy, (16)
Li={(,0: 2H1<g<2/), ieN, jeNo. (17)

Further, letP;; : A — A be the canonical projection with respectitg; i.e., fori e A
we put

/lu,v (u,v) € Ij,iy

(Pji My = {O , ueNg veZ9

otherwise,
Observe that
Mj,i = |I/,l| ~ 2(]“1’1)(1’ (18)
wy (2710 ~ 2% i (0 el (19)
o o0
idy =Y > P (20)
j=0 i=1

Monotonicity arguments and elementary properties of the approximation numbers yield

1 S T T
Pi;: B 19)§,—.2_]a (Id:Z ! l “)
ak( i o+— B1 'nf/éel,-,i w270 ay po > Lpg
<c27 g (id s 6 > 07"). (21)

Step 2. To shorten the notation we éui: % + % for anys > 0. Using (5) and (21) we
find

L@ (P ) <2707 L@ (id : 60" > €p"). (22)
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The characterization of the asymptotic behavior of the approximation numbers: of id

el — €, cf. (13), and (18) imply that

LY (d = Ly > £p") < € 200D/, (23)
. - . . L, 1 1
L@ (id: 000 > 007y < ¢ 240HGED - jf S s = (24)
’ N
_ N N » 1 1
L (d s £ > ) < C2UGED i 2> 2 (25)
’ N
For a given Me N let
M 0o
P = Z Z Pj_yi and 0= Z Z Pjy,'. (26)
m=0 j+i=m m=M+1 j+i=m

Substep 2.1. The estimation@f(P : Bo — B1). Let1 > 3. Then the formulae (22),
(24) and (6) yield

M
LD < ), D) LRyt

m=0 j+i=m
M
a3 Y s i
m=0 j+i=m
1,1 o )
S 2emdGHT D) TR
Sz § Yo 20mdGHi=D if o> (27)

YM o (m 4+ H2MIGHD i o =5,
For$ > o we choose such that/(X + 1) — o« > 0. Then (27) implies that

LY (P) < c2MG+i=D), (28)

For o < o we choose such thatz’(% + %) — 0 > 0. Then (27) implies that
L9 (P) < c2MGH=D, (29)
In view of (5), the inequalities (28) and (29) imply that

in(a,0
agam (P 1 Bg— B1) < 632dM(%7%,%0>) (30)
So by the standard argument

in(o,0)
ar(P : By B1) < cak~("dIH3-D) (31)

foranyk € N, if o # 9.

Substep 2.2. The estimatef Q) from above. First we assume tha& min(e, 0) > ?.
We proceed as in (27) and obtain by (23) that

8] .
(a) Q< omd(:—4) 1 if o £ 0,
Ly <er m_%ﬂz i X{m—i—l it (32)
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Sinceu > ”—’ the formula (32) implies that

L(a) (Q) < CZdM( ) (33)
In view of (5), the inequality (33) implies that

1 1 min(z,(i))
d

aoma(Q : Bo— B1) < c3 oMd(F =3~ (34)
and in consequence
in(o,0)
ar(Q : Bo > By) < cak ("FTFED (35)

foranyk € N.
Substep 2.3. Now let = min(o, §) < ¢.We choose-3 < % < 0,suchthatO< 142 <
£< 1 Then (25) gives

L (0 < Z Y L (Pt

m=M j+i=m
o
< Z Z 0—0(jd+i) gomd(7+2)
m=M_j+i=m
A RS T

022 X{m+1 if o0 = . (36)

Thus
LE?éo(Q) < e dMG+E-1) .

if o # .

We putk = [2Md%]. Then in view of (5), the inequality (37) implies
aw(Q : Bor> By) < c2MMIGHT 80172 <ck~it, (39)

By a standard argument (38) can be extended to any positive irkeger
Step 3. Ifu > £ then the proposition follows immediately from (31) and (35)u ¥ ¢ d

the_nﬁ,‘ + 2 }gg‘ . So the proposition follows from (31) and (38). This proves the
estimates from above

Step 4. Now we prove the estimate from below. We regard the following commutative
diagram

S .o
oS e,,o(szzpo(wa))

Po
Idl lid (39)
ot (tn)
Thus
ag(1d) < [ISIIT |l ax (id). (40)
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The definition ofSandT as well as the value dfl will depend on the given values @b,
p1, 0, ando. Letv = (vq, ..., vy) andi = (4;).

() Let ¢ < 5<o. WetakeN = My = |0l ~ 2%,k € N, k< 2; cf. (16) and (18).
Leto: {1,..., N} - I o be a bijection. We define

— V([)_l(i) If (]7 l) € Iksol
(S(V))j,i { 0 otherwise,

(TW), =4kpiy, 1<i<N.
Then|T| = 1 and||S|| < C2*, cf. (18) and (19). In consequence by Lemma 2 and (40)
we get
C2W-DG=D) < CyNT2- W23 < K 4 (id). (41)

This gives the estimate we are looking for.
(i) Let ¢ < o < 5. We takeN = Moy = [Ioxl ~ 289, k € N, k< 2, cf. (17) and (18).
Leto : {1,...N} — Ipx be abijection. We define

o i G e To,
(SM);, {o otherwise,

(T(D), =409y, 1<i<N.

Then||T| = 1 and| S| <C2%; cf. (18) and (19). In consequence by Lemma 2 and (40)
we get

C 2D =D) < K0 ,(id). (42)
(iii) Let b(% ando < o. We choose the sanmé, S, andT as in the point (i) and put
¢ = [N?"]. We havet < N /4 for sufficiently largeN since 2<t. MoreoverN/7¢=1/2 ~ 1,
So by Lemma& and (40) we get
Co# < C27M < ayid). (43)
(iv) Let ocg%’ and o< 0. We choose the sam, S, andT as in point (ii). Arguments
similar to the last one witli = [N?/!] give as
C & < C27% < ayid). (44)
This finishes the proof. [J
Remark 12. The method of the proof is not exact for the limiting case= o but it
gives some hints in this case also. Now we need additional information, about the relation

betweers andg. Here one can always usedl# 1/s + 1; cf. [15, 1.c.5]. It turns out that
with =4 +1 -1 4¢¢> 0, the estimate

agna (P : Bo > By) < c27M4G+3D pe
— cz—Md(g-l‘%—%) M%-l—%—%-&-l-&-s (45)

holds.
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Similarly, if g > ;1 then we get the estimate
aoma (Q . By Bl> LeaMdl=3+D) ppl/e — (oMd(=h=3+7) 1y3/2,
Both together yield
a (id - Bo — Bl> <esk (2D 1+ loghydtz—i+ite, (46)

Whereg > % ande > 0 may be chosen arbitrarily small.
In the similar way, i <1 then taking? = 4 - 5 — ¢, & > 0, we get the estimates

asz(Q - Bo > B1> Sc2Mdls ptfe — co=Mdlh pphb+le
The last estimates and (45) yield
ak(id - Bo B1> <ok~ (14 logk)d-a+1+e, (47)
wheref < ;1 ande > 0 may be chosen to be arbitrarily small.
The exponent of the logarithmic term is not optimal, but the estimate shows that a loga-

rithmic term is the only additional term we can expect in the limiting case.

Proposition 13. Suppose. < po<p1<20r2< po< p1<ooandd # o. Then

ai(id : £4o(27°Cpo () > Ly (€2) ) ~ K7 (48)
where
_ min(a, 0)
= — (49)

Proof. Step 1(Estimates from Above). We can deal with the proof in a way similar to that
for the previous proposition, so we use the same notation. Now Le2rimalies that

L (0d 1 € > £p0") < MY < Cc2U+DE (50)

So, using (22), (26), (6), and (50) we find that

M
Co(iSai d
LE?&Q(p)Q < Z Z 2—0(jo+ia) pom
m=0 j+i=m

M
d 1
< ¢ Z zgmd(;—oc) < 632QdM(;—oc) (51)

m=0

for 6 > wand? > %. Thus

asm (P : Bo— By) < c32-9Ma. (52)
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In the same way we prove that
apan (P : Bo > By) < c32 4Mi (53)

if 0 <a.
For the operato® we have

[

Co(iSti d

Lgago(Q)Q < Z Z 2 0(jo+in) 20m
m=M+1 j+i=m

o0
d 1
<e 2 : pomd (5 —{0) < 6329‘1M(?_“), (54)
m=M+1

wherey = min(, o) and? < 4. Thus
azn (Q : Bo— By) < c32-Ma. (55)

Now (52), (53), and (55) give us the estimate from above.

Step AEstimates from Below). We can deal with the estimates in a way similar to that in
Step 4of the last proof. 1i6 < « we takeN, S, andT the same as in point (i). Using Lemma
2 we get

C < Xapua(id).
If « < 6 we should follow the point (ii). [

Remark 14. Once more the proof gives us an estimate for the limiting éasex. Now
reasoning similar to that in RematR leads to the estimate

a(id) < Cyk~a(L+ logk)ydt1+e,
wheree > 0.

Proposition 15. Let 1< pg, p1 <00, % — min(@d) p—lo, andd # o. SuUppose < p1 <
po<oo. Then

ak (id  L40(2000 o (w5)) > L, (¢ ,,1)) ~ k%, (56)
with
w — Mn@o 1 1 (57)
d po  p1

Proof. Step 1(Estimates from Above). We only sketch the proof since, once more, we can

use the same reasoning. We é;ui: % — p—lo Now by Lemma3

ar(id: £y > €7 ) ~ (M —k+ DM k=1, M (58)
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In consequence

1 1
R .o (59)
S

1
: M, M;,; s
L (id : £y > £,]") < M,

5L ?

So, using (22), (26), (6), and (59), we find that

M
. L
Lg,ago(P)@SZ Z o—0(jo+in) gomd(+7)

m=0 j+i=m
M 1,1_un 1
<o Z 2@md(;+;—g) <3 ZQdM(E-i-*—g) (60)
m=0
with 4 = min(d, o) and® > & — 1 . Thus,
1
agsm (P 1 Bg— B1) < C32_dM(%_F). (61)

For the operato@ we have
o
LOOe< Y > o—0(jo+in) pemd(3+7)
5.
m=M+1 jt+i=m

(0.¢]
1,1
S 2AGHFTD g MG (62)
m=M+1

ifo<i<b— % Suchs can always be taken since by the assumpti]%)ns L. Thus

1
apan (Q ¢ Bo > By) < ca2 M3, (63)

Now (61) and (63) give us the estimate from above.
Step 2(Estimates from Below). Once more we follow Step 4 of the proof of Proposition
11, now using (58) instead of Lemma 2[]

Remark 16. For the limiting cas& = « we now get the estimate

o 1 1 .
ar(id) < Cgk_a_‘_*_m (1+|ogk)3_70+ﬁ+l+b,

whereg > 0.

3. Approximation numbers of Sobolev embeddings

We shall letA$, (R, w,) (A3, ,(RY)) stand for eitherBs,  (R¢, w,) (BS ,(R%)) or
F3 (R wy) (F5 , (RY)), with the understandlng that for tiiespaces we must haye <
oo. The main result of the paper reads as follows.
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Theorem 17. Let 1< po, p1 <00, 1<q0, g1 <00, and —oo < s1 < sg < oo. Leta > 0,

B =S0_Sl_d(p_lo - p—ll) > O,and% = %“) + %.We assume that

(@) 1< po<p1<o00r p < p1 < po< 00,
(b) o # 5.

Leta; denote the kth approximation number of the Sobolev embedding

Azoo,qo(Rd’ Wa) Ai}lyql(Rd)'
Then

ag ~ k™%,
where

(i) %= TN it 1< po< pr<20r 2< po< pr< oo,
.. in(a, & e~
(i) %= TS + 50— 5o if p < p1 < po<oo,
(i) % = MOD 4 §— el if 1<po < 2 < pr<oo, (po. p1) # (L.oo) and
i _d
min(a, 0) > iy D"
min(e.d) ~ Min(pg.p1)
J d 2
min(pg. p1)

(iv) % =

if 1< po < 2 < p1<oo, (po, p1) # (1, 00) andmin(e, 6) <

Proof. If both A}OO,QO(W, We) andAj,ll,ql(Rd) are Besov spaces then the assertions follow
from TheorenB and Proposition 11, Proposition 13, or Proposition 15, respectively.

The general upper estimates follow from the Besov case, the multiplicativity property of
approximation numbers, and elementary embeddings

AR 0B wy) = B (RY wy) = B! (R = A% (RY).
To prove lower estimates one should consider the following embeddings:

(R = Bl (RY. O

B (R, wy) > AR (RY, wy) = AL .

P0,490 P1.91

Remark 18. Let all the assumption of the theorem hold except assumgbiprf o« = o
then for anye > 0 there exist constants> 0 andC, > 0 such that

ck™ < ap < Cok™ (1+ logh)*i+e, (64)

The only exact estimate, known for the limiting case, was proved by Mynbaev and
Otel’baev for Bessel potential spaces. In our notation their result reads

ac(F33 2(RY, wy) <> FS, o(R) ~ k= (1 +logh)d,
where

so >0, 1< po<p1<2, 2< po< p1 < 00;
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cf.[20,V, Section 3, Theorem 9]. Some other estimates, not exact but better then the estimate
(64), can be found in [12]. So the only advantage of (64) is that the estimates holds with no
additional assumption.

Atthe end we use this theorem to fill the only gap in estimation of approximation numbers
of Sobolev embeddings on bounded domains.

LetQ c R? be a bounded domain witi™® boundary. Letd’, ,(Q2), be the Besov space
or the Triebel-Lizorkin space of? defined by restrictions; cf [8 Chap. 2.5]; [26, Chap.
4]; [27, Chap. 3].

Corollary 19. Leta; denote the kth approximation number of the Sobolev embedding

A (Q) < AL

P0.40 ).

P1.91

Then

- if p<p1 < po<oo,

fe
=
x
I
WS RN [
+ .
||~
< |»~

(iiiy = 9+3— if 1< po<2<p1<00, (po, p1)#(1, 00) andd>

__1 __d
In(p ,p1) min(pg, p1)’

0 3 mln(go,m) if

(V) » = 3 1< po <2 < p1<00, (po, p1) # (1,00) andd <

__d
min(pg, p1) °

Proof. We choose: > 6. We prove the corollary for Besov spaces; the restis a consequence
of elementary embeddings. LR = f|q be a restriction operator. It is a bounded linear
operator fromB (Rd) ontoB (Q) There exist an extension bounded linear operator

S:B () Bé ,(R?) such thaIRS = id; cf. Theorem 3.3.4ifR27]. LetS, f = w;1Sf
and Raf = waf|g We have the following commutative diagram:

1’0 KIO(Q) > Bpo qo(Rdv W)

idl lld
[’l 41(Q) B[Jl ql(Rd)

The operators,, and R, are bounded an&, S, = id. In consequencey (id) < C ax(Id).
Now the corollary follows immediately from the previous theorern]

Almost all assertions of the last corollary are known. Points (i)—(iii) were proved by Ed-
munds and Triebel; cf8, Theorem 3.3.4]. Point (iv) was proved by Caetano with additional

assumption thadé < m; cf. [3]. To the best of our knowledge our proof is the first
0»
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that also covers the case= m Since the estimates from below are known[8f.
0’

Theorem 3.3.4], we have the following corollary.

Corollary 20. Let1< pg < 2 < p1<00, (po, p1) # (1,00), andd = m. Then
O!

ai ~ k=12,

Remark added in proof. (1) The method presented in the paper can be used also in the
quasi-Banach case, @ p < 1 or0 < ¢ < 1. The quasi-Banach version of Lemra
was proved in [8, Theorem 3.2.2], with the additional assumptipr: co if pg < 1. Also
Lemma 3 can be extended to the quasi-Banach spaces with® < p1 <oo. The proof
of the quasi-Banach case is the same as that for Banach spaces; cf. [21, Proposition 2.9.8].
The wavelet characterization of weighted Besov spaces with < oo and 0 < ¢ < oo
was recently proved by Haroske and Triebel in [14]. In the end the technique of operator
ideal quasi-norms also works for operators acting between quasi-normed spaces. This fact
was used recently in [17]. So we can repeat the calculations from Section yvithl,
p1 < o0, and O< go, g1 <oo. In consequence Theorem 17 also holds in the quasi-Banach
case withpy < oo andpy = 00 if 0 < po < 1.

(2) The technique also works for other type of weights. In particular, we have recently
proved the following theorem.

Theorem 21. Let 0 < po, p1<o0, 0 < ¢o,q1< 00, and —oco < 51 < 59 < oo. Let
vy (x) = (1+|0g(1+ |x|2))a ,x € R?, andu > 0.If so—sl—d(p—lo — %) > 0andpo<p1
then the embedding

A;oo,qo(Rd’U“) e A;ll»QI([Rd)

is compact and

A (A9 o (RY, v2) = A% (RD) ~ vk
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