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Abstract

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between
weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact esti-
mates are proved in almost all cases.
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Approximation numbers of Sobolev embeddings between functions spaces of Sobolev–
Besov–Hardy type have been studied in recent years by several authors. The approximation
numbers of Sobolev embeddings of function spaces defined on bounded domains were
studied by Edmunds and Triebel; cf. [6–8]. Later some of their estimates were improved
by Caetano; cf. [3]. For weighted function spaces the counterpart of the theory was studied
by Mynbaev and Otel’baev [20] in the case of fractional Sobolev spaces, and then more
generally by Haroske, cf. [11], and by Caetano, cf. [3]. Some later results are described in
[12]. In contrast to the function spaces on bounded domains, where the exact estimates were
proved in almost all cases, the estimates for weighted spaces are less final. The importance
of the asymptotic behavior of approximation and entropy numbers of Sobolev embeddings
for the spectral theory of operators is discussed in [8]; cf. also [5,15].
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The aim of this paper is to prove the exact estimates of the asymptotic behavior of the
approximation numbers in the so-called not-limiting case.We improve some earlier results
obtained by Haroske and Caetano. However, the method we use is quite different from that
one used in[11,3]; therefore we present further how it works in all cases. It is essentially the
same method that was used for investigation of asymptotic behavior of entropy numbers of
the embeddings; cf. [16].
Following Haroske [11] and Caetano [3], we consider the spaces with polynomial

weightsw�(x) = (1 + |x|2)�/2, � > 0. The Sobolev embeddings of weighted Besov
spaces,

Bs0
p0,q0

(Rd , w�) ↪→ Bs1
p1,q1

(Rd), (1)

−∞ < s1 < s0 <∞, 1�p0�p1�∞, 1�q0, q1�∞, (2)

hold if � = s0 − s1 − d( 1
p0
− 1

p1
) > 0. The not-limiting case means that� �= �. We also

consider the casep1 < p0.
We say thata ∼ b if there exists a constantc > 0 (independent of relevant parameters)

such that

c−1 a�b�c a.

Let ak bek-approximation numbers of the embeddings (1). We prove that

ak ∼ k−�, (3)

where� > 0 is a positive constant depending onp0, p1, s0, s1, and�; cf. Theorem17. As
a consequence we can prove the exact estimates of approximation numbers of the Sobolev
embeddings on boundedC∞ domain if 1�p0 < 2 < p1�∞ and� = d

min(p′0,p1)
. This

seems to be the first proof of the estimates.
We get also some estimates in the limiting case� = �, but in this case our estimates are

not exact. Namely, we get

ck−� � ak � C�k
−�(1+ logk)�+1+�, � > 0. (4)

The paper is organized as follows. In Section1 we collect definitions and prelimi-
nary results needed later. In Section 2 we regard the approximation numbers of embed-
dings of related sequence spaces. The main result is formulated and proved in the last
section.

1. Preliminaries

1.1. Approximation numbers

We recall the definitions of approximation numbers and corresponding operator ideal
quasi-norms, whichwill be usedwidely in the paper.We refer to books byCarl and Stephani
[4] and Pietsch [21] for details, proofs, and more information.
LetB0 andB1 be two complex Banach spaces and letT : B0→ B1 be a bounded linear

operator.
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Definition 1. Thekth approximation numberak(T ) of the operatorT : B0 → B1 is the
infimum of all numbers‖T −A‖; whereA runs over the collection of all continuous linear
operatorsA : B0→ B1 of rank smaller thank.

Approximation numbersak(T ) form a decreasing sequence witha1(T ) = ‖T ‖. If the
sequence converges to zero then the operatorT is compact. The opposite implication is
not true. It may happen that limk→∞ ak(T ) > 0 for some compactT if B1 fails to have
the approximation property. The approximation numbers have in particular the following
properties:

— (additivity) an+k−1(T1+ T2) � ak(T1)+ an(T2),
— (multiplicativity) an+k−1(T1T2) � ak(T1)an(T2),
— (rank property)ak(T ) = 0⇔ rank(T ) < k.

For a positive real numberswe put

L(a)
s,∞(T ) := sup

k∈N

k1/s ak(T ). (5)

The expressionL(a)
s,∞(T ) is an example of anoperator ideal quasi-norm. This means in

particular that there exists a number 0< ��1 such that

L(a)
s,∞


∑

j

Tj


�

�
∑
j

L(a)
s,∞(Tj )�, (6)

for any sequence of operatorsTj : B0→ B1; cf. König [15, 1.c.5].
The following lemma concerning approximation numbers of embeddings of finite-

dimensional complex�p-spaces can be found in Edmund’s and Triebel’s book [8, Corollary
3.2.3], but it is essentially due to Gluskin [9]; cf. also [20].

Lemma 2. LetN ∈ N andk� N
4 .

(i) If 1�p0�p1�2 or 2�p0�p1�∞ then

ak

(
id : �Np0 �→ �Np1

)
∼ 1.

(ii) If 1�p0 < 2< p1�∞, (p0, p1) �= (1,∞) then

ak

(
id : �Np0 �→ �Np1

)
∼ min

(
1, N1/tk−1/2

)
,

where1
t
= 1

min(p′0,p1)
.

Forp1 < p0 the corresponding approximation numbers were calculated by Pietsch[21,
p. 109].

Lemma 3. Let1�p1 < p0�∞. Then

ak

(
id : �Np0 �→ �Np1

)
= (

N − k + 1
)1/p1−1/p0 , k = 1, . . . , N.
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1.2. Weighted function spaces

Weassume that the reader is acquaintedwith the definitions and basic properties of Besov
and Triebel–Lizorkin spaces. Triebel’s books[26,27] are the classical references here, but
one can also consult [8] and many other books. In this section we recall a definition and a
few of the properties of weighted function spaces.
In what follows we will be interested in the function spaces with polynomial weights

w�(x) =
(
1+ |x|2)�/2 , � > 0. (7)

Definition 4. Let 1�p�∞, 1�q�∞, ands ∈ R. Letw� be the above weight function.
Then we put

Bs
p,q(R

d , w)=
{
f ∈ S ′(Rd) : ‖f |Bs

p,q(R
d , w)‖ = ‖fw|Bs

p,q(R
d)‖ <∞

}
,

F s
p,q(R

d , w)=
{
f ∈ S ′(Rd) : ‖f |F s

p,q(R
d , w)‖ = ‖fw|F s

p,q(R
d)‖ <∞

}
,

for p �= ∞ in theF -case.

Remark 5. It follows immediately from the definition that an operatorf �→ wf is an iso-
morphic mapping fromBs

p,q(R
d , w) ontoBs

p,q(R
d) and fromF s

p,q(R
d , w) ontoF s

p,q(R
d).

Remark 6. Therearedifferentways to introduceweighted function spaces; cf., e.g.,Triebel
[26], Löfström [18], Schmeisser andTriebel [24], Buy et al. [2], Edmunds andTriebel [8], or
Rychkov [23]. In the cited works the authors start with a Fourier-analytic definition. Under
certain extra conditions on the weights these different approaches coincide; cf. [8,18,23,
24].

It follows from the definition of the spaces that in studying embeddings betweenweighted
spaces it is sufficient to consider embeddings between weighted and unweighted spaces; cf.
Remark 5. The following characterization of the compactness of embeddings was proved
in [16]; cf. also [13].

Proposition 7. Let1�p0, p1�∞, 1�q0, q1�∞,−∞ < s1 < s0 <∞, and� > 0. Let
� = s0 − s1 − d

p0
+ d

p1
. The embeddingBs0

p0,q0(R
d , w�) ↪→ B

s1
p1,q1(R

d) is compact if and

only ifmin(�, �) > dmax
( 1
p1
− 1

p0
, 0

)
.

The similar theorem holds also forF s
p,q -spaces. The symbol↪→ will be used for contin-

uous embedding.

1.3. Wavelet characterizations of weighted Besov spaces

Wavelet bases in Besov spaces are a well-developed concept. In the case of unweighted
spaces we refer to the monographs by Meyer[19] and Wojtaszczyk [29] and the article by
Bourdaud [1] Here we are interested in the wavelet bases in the weighted cases. We quote
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the wavelet characterization of weighted Besov spaces proved in[16], but cf. also [25] and
[22], where more general weights are considered.
First of all we need to fix some notations. ByN we denote the set of natural numbers, by

N0 the setN∪{0}, and byZd the set of all lattice points inRd having integer components.
Let �̃ be an orthogonal scaling function onR with compact support and of sufficiently

high regularity. Let̃� be an associated wavelet. Then the tensor product ansatz yields a
scaling function� and associated wavelets�1, . . . ,�2d−1, all defined now onRd . We
assume that

�̃ ∈ CN1 and supp̃� ⊂ [−N2, N2]
for certain natural numbersN1 andN2. This implies that

�, �i∈CN1 and supp�, supp�i⊂[−N3, N3]d , i=1, . . . ,2d − 1. (8)

We shall use the standard abbreviations

�j,�(x) = 2jd/2�(2j x − �) and �i,j,�(x) = 2jd/2�i (2
j x − �). (9)

Apart from function spaces with weights, we introduce sequence spaces with weights. If
w is a given continuous weight function thenw(j, �) = w(2−j �) for j ∈ N0 and� ∈ Zd .
Let 1�p, q�∞. We put

�∗q
(
2js�p(w)

)
:=


� = {�i,j,�}i,j,� : �i,j,� ∈ C,

= ‖ � |�∗q
(
2js�p(w)

)
‖


 ∞∑
j=0

2jsq


2d−1∑

i=1

∑
�∈Zd

|�i,j,� w(j, �)|p

q/p




1/q

<∞



(10)

and

�q

(
2js�p(w)

)
:=


� = {�j,�}j,� : �j,� ∈ C,

‖ � |�q
(
2js�p(w)

)
‖ =


 ∞∑
j=0

2jsq


 ∑
�∈Zd

|�j,� wj,�|p

q/p




1/q

<∞


 . (11)

For smooth weights and compactly supported wavelets it makes sense to consider the
Fourier-wavelet coefficients of functions f∈ Lp(w) with respect to such an orthonormal
basis. The following theorem was proved in[16], but one can also consult [25].

Theorem 8. Let � be a scaling function and let�i , i = 1, . . . ,2d − 1; be the corre-
sponding wavelets satisfying(8). Let 1�p, q�∞ and let0 < s < N1. Then a function
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f ∈ Lp(R
d , w�) belongs toBs

p,q(R
d , w�), � > 0, if and only if

‖ f |Bs
p,q(R

d , w�)‖♣ =

 ∑
�∈Zd

|〈f,�0,�〉w�(�)|p

1/p

+
2d−1∑
i=1



∞∑
j=0

2j
(
s+d( 12− 1

p
)
)
q


 ∑
�∈Zd

|〈f,�i,j,�〉w�(2
−j �)|p


q/p




1/q

<∞. (12)

Furthermore,‖ f |Bs
p,q(R

d , w�)‖♣ may be used as an equivalent norm in

Bs
p,q(R

d , w�).

Remark 9. There is another way of discretizing of the function spaces useful for investi-
gation of properties of entropy and approximation numbers of Sobolev embeddings. This
is so-called quarkonial decomposition. The method was developed by H. Triebel in[28].

2. Approximation numbers of embeddings of some sequence spaces

We start with the following lemma which is simply a corollary of Lemma 2; cf. also [3].

Lemma 10. Let 1�p0 < 2 < p1�∞, (p0, p1) �= (1,∞), andN = 1,2, 3, . . . . Then
there is a positive constant C independent of N and k such that

ak

(
id : �Np0 �→ �Np1

)
� C



1 if k�N2/t ,
N1/tk−1/2 if N2/t < k�N ,
0 if k > N ,

(13)

where1
t
= max

( 1
p1
, 1
p′0

)
.

Proof. The last estimate, fork > N , is obvious. To prove the others we regard the diagram

�Np0
S−−−−→ �4Np0

id

� �Id

�Np1
T←−−−− �4Np1

where

S(�1, . . . .�N) = (�1, . . . , �N, 0, . . . ,0) and

T (�1, . . . , �4N) = (�1, . . . , �N).

Both the norms‖S‖and‖T ‖are equal to 1; thereforeak(id)�ak(Id). Now the result follows
from Lemma2. �
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Proposition 11. Suppose1�p0 < 2< p1�∞, (p0, p1) �= (1,∞) and� �= �.We put

� =



min(�,�)
d
+ 1

2 − 1
min(p′0,p1)

if min(�, �) > d
min(p′0,p1)

,

min(�,�)
d
· min(p′0,p1)

2 if min(�, �)� d
min(p′0,p1)

.
(14)

Then

ak

(
id : �q0

(
2j��p0(w�)

) �→ �q1
(
�p1

)) ∼ k−�. (15)

Proof. Step 1. Preparations. We put

B0 = �q0
(
2j��p0(w�)

)
and B1 = �q1

(
�p1

)
.

Let

� := {� = (�j,�) : �j,� ∈ C, j ∈ N0, � ∈ Zd}.

Let Ij,i ⊂ N0× Zd be such that

Ij,0 := {(j, �) : |�|�2j } , j ∈ N0, (16)

Ij,i := {(j, �) : 2j+i−1 < |�|�2j+i} , i ∈ N , j ∈ N0. (17)

Further, letPj,i : � �→ � be the canonical projection with respect toIj,i ; i.e., for� ∈ �
we put

(Pj,i�)u,v :=
{

�u,v (u, v) ∈ Ij,i ,
0 otherwise,

, u ∈ N0, v ∈ Zd .

Observe that

Mj,i := |Ij,i | ∼ 2(j+i)d , (18)

w�(2
−j �) ∼ 2�i if (j, �) ∈ Ij,i , (19)

id� =
∞∑
j=0

∞∑
i=1

Pj,i . (20)

Monotonicity arguments and elementary properties of the approximation numbers yield

ak

(
Pj,i : B0 �→ B1

)
� 1

inf �∈Ij,i w(2−j �)
2−j� ak

(
id : �Mj,i

p0 �→ �
Mj,i
p1

)
� c 2−j�−i� ak

(
id : �Mj,i

p0 �→ �
Mj,i
p1

)
. (21)

Step 2. To shorten the notation we put1
s
= 1

r
+ 1

2 for anys > 0. Using (5) and (21) we
find

L(a)
s,∞(Pj,i)�c 2−j�−i� L(a)

s,∞(id : �Mj,i
p0 �→ �

Mj,i
p1 ). (22)
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The characterization of the asymptotic behavior of the approximation numbers of id:
�Np0 �→ �Np1, cf. (13), and (18) imply that

L
(a)
2,∞(id : �

Mj,i
p0 �→ �

Mj,i
p1 ) � C 2d(j+i)/t , (23)

L(a)
s,∞(id : �Mj,i

p0 �→ �
Mj,i
p1 ) � C 2d(j+i)(

1
t
+ 1

r
) , if

1

s
>

1

2
, (24)

L(a)
s,∞(id : �Mj,i

p0 �→ �
Mj,i
p1 ) � C 2d(j+i)(

1
t
+ 2

rt
) , if

1

2
>

1

s
> 0. (25)

For a givenM∈ N0 let

P :=
M∑

m=0

∑
j+i=m

Pj,i and Q :=
∞∑

m=M+1

∑
j+i=m

Pj,i . (26)

Substep 2.1. The estimation ofak(P : B0 �→ B1). Let 1s > 1
2. Then the formulae (22),

(24) and (6) yield

L(a)
s,∞(P )� �

M∑
m=0

∑
j+i=m

L(a)
s,∞(Pj,i)�

� c1

M∑
m=0

∑
j+i=m

2−�(j�+i�) 2�md( 1
t
+ 1

r
)

� c2




∑M
m=0 2�md( 1

r
+ 1

t
− �

d
) if � < �∑M

m=0 2�md( 1
r
+ 1

t
− �

d
) if � > �∑M

m=0 (m+ 1)2�md(
1
r
+ 1

t
− �

d
) if � = �.

(27)

For� > � we chooser such thatd
(1
r
+ 1

t

)− � > 0. Then (27) implies that

L(a)
s,∞(P ) � c 2dM( 1

r
+ 1

t
− �

d
). (28)

For� < � we chooser such thatd
(1
r
+ 1

t

)− � > 0. Then (27) implies that

L(a)
s,∞(P ) � c 2dM( 1

r
+ 1

t
− �

d
). (29)

In view of (5), the inequalities (28) and (29) imply that

a2dM (P : B0 �→ B1) � c3 2
dM

(
1
t
− 1

2−min(�,�)
d

)
. (30)

So by the standard argument

ak(P : B0 �→ B1) � c3 k
−(min(�,�)

d
+ 1

2− 1
t
) (31)

for anyk ∈ N, if � �= �.
Substep 2.2. The estimate ofak(Q) from above. First we assume that� = min(�, �) > d

t
.

We proceed as in (27) and obtain by (23) that

L
(a)
2,∞(Q)��c1

∞∑
m=M+1

2�md( 1
t
− �

d
) ×

{
1 if � �= �,
m+ 1 if � = �.

(32)
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Since� > d
t
the formula (32) implies that

L
(a)
2,∞(Q) � c 2dM( 1

t
− �

d
). (33)

In view of (5), the inequality (33) implies that

a2Md (Q : B0 �→ B1) � c3 2
Md( 1

t
− 1

2−min(�,�)
d

) (34)

and in consequence

ak(Q : B0 �→ B1) � c3 k
−(min(�,�)

d
+ 1

2− 1
t
) (35)

for anyk ∈ N.
Substep 2.3. Now let� = min(�, �)� d

t
.We choose−1

2 < 1
r
< 0, such that 0< 1

t
+ 2

tr
<

�
d
� 1

t
. Then (25) gives

L(a)
s,∞(Q)� �

∞∑
m=M

∑
j+i=m

L(a)
s,∞(Pj,i)�

� c1

∞∑
m=M

∑
j+i=m

2−�(j�+i�) 2�md( 1
t
+ 2

tr
)

� c2

∞∑
m=M

2�md( 1
t
+ 2

tr
− �

d
) ×

{
1 if � �= �
m+ 1 if � = �.

(36)

Thus

L(a)
s,∞(Q) � c 2dM( 1

t
+ 2

tr
− �

d
) (37)

if � �= �.
We putk = [2Md 2

t ]. Then in view of (5), the inequality (37) implies

ak(Q : B0 �→ B1) � c 2dM
2
t
( 12+ 1

r
− t�

2d )k−
1
r
− 1

2 �ck−
�
d
t
2 . (38)

By a standard argument (38) can be extended to any positive integerk.
Step 3. If� > d

t
then the proposition follows immediately from (31) and (35). If�� d

t

then �
d
+ 1

2 − 1
t
� �

d
· t2. So the proposition follows from (31) and (38). This proves the

estimates from above.
Step 4. Now we prove the estimate from below. We regard the following commutative

diagram

�Np0
S−−−−→ �q0

(
2j��p0(w�)

)
Id

� �id

�Np1
T←−−−− �q1

(
�p1

) (39)

Thus

ak(Id) � ‖S‖ ‖T ‖ ak(id). (40)
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The definition ofSandT as well as the value ofN will depend on the given values ofp0,
p1, �, and�. Let 	 = (	1, . . . , 	N) and� = (�j,i ).

(i) Let d
t
< ���. We takeN = Mk,0 = |Ik,0| ∼ 2kd , k ∈ N, k� 2

d
; cf. (16) and (18).

Let
 : {1, . . . , N} → Ik,0 be a bijection. We define(
S(	)

)
j,i
=

{
	
−1(i) if (j, i) ∈ Ik,0,
0 otherwise,(

T (�)
)
i
= �k,
(i), 1� i�N.

Then‖T ‖ = 1 and‖S‖�C2k�, cf. (18) and (19). In consequence by Lemma 2 and (40)
we get

C 2(dk−2)(
1
t
− 1

2 ) � C1N
1
t 2−(dk−2)

1
2 � 2k�a2dk−2(id). (41)

This gives the estimate we are looking for.
(ii) Let d

t
< � < �. We takeN = M0,k = |I0,k| ∼ 2kd , k ∈ N, k� 2

d
, cf. (17) and (18).

Let
 : {1, . . . N} → I0,k be a bijection. We define(
S(	)

)
j,i
=

{
	
−1(i) if (j, i) ∈ I0,k,
0 otherwise,(

T (�)
)
i
= �0,
(i), 1� i�N.

Then‖T ‖ = 1 and‖S‖�C2k�; cf. (18) and (19). In consequence by Lemma 2 and (40)
we get

C 2(dk−2)(
1
t
− 1

2 ) � 2k�a2dk−2(id). (42)

(iii) Let �� d
t
and� < �. We choose the sameN, S, andT as in the point (i) and put

� = [N2/t ].We have��N/4 for sufficiently largeNsince 2� t . MoreoverN1/t�−1/2 ∼ 1.
So by Lemma2 and (40) we get

C �−
�t
d2 � C 2−k� � a�(id). (43)

(iv) Let �� d
t
and���. We choose the sameN, S, andT as in point (ii). Arguments

similar to the last one with� = [N2/t ] give as

C �−
�t
d2 � C 2−k� � a�(id). (44)

This finishes the proof. �

Remark 12. The method of the proof is not exact for the limiting case� = � but it
gives some hints in this case also. Now we need additional information, about the relation
betweensand�. Here one can always use 1/� = 1/s + 1; cf. [15, 1.c.5]. It turns out that
with 1

s
= �

d
+ 1

2 − 1
t
+ �, � > 0, the estimate

a2Md

(
P : B0 �→ B1

)
� c 2−Md(

�
d
+ 1

2− 1
t
) M1/�

= c 2−Md(
�
d
+ 1

2− 1
t
) M

�
d
+ 1

2− 1
t
+1+� (45)

holds.
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Similarly, if �
d
> 1

t
, then we get the estimate

a2Md

(
Q : B0 �→ B1

)
�c 2Md(− �

d
− 1

2+ 1
t
) M1/� = c 2Md(− �

d
− 1

2+ 1
t
) M3/2.

Both together yield

ak

(
id : B0 �→ B1

)
�c� k

−( �
d
+ 1

2− 1
t
) (1+ logk)

�
d
+ 1

2− 1
t
+1+�, (46)

where�
d
> 1

t
, and� > 0 may be chosen arbitrarily small.

In the similar way, if�
d
� 1

t
then taking1

s
= �

d
· t2 − �, � > 0, we get the estimates

a2Md

(
Q : B0 �→ B1

)
�c 2−Md

�
d
· t2 M1/� = c 2−Md

�
d
· t2 M

�
d
· t2+1−�.

The last estimates and (45) yield

ak

(
id : B0 �→ B1

)
�c� k

−( �
d
· t2 ) (1+ logk)

�
d
· t2+1+�, (47)

where�
d
� 1

t
, and� > 0 may be chosen to be arbitrarily small.

The exponent of the logarithmic term is not optimal, but the estimate shows that a loga-
rithmic term is the only additional term we can expect in the limiting case.

Proposition 13. Suppose1�p0�p1�2 or 2�p0�p1�∞ and� �= �. Then

ak

(
id : �q0

(
2j��p0(w�)

) �→ �q1
(
�p1

)) ∼ k−�, (48)

where

� = min(�, �)
d

. (49)

Proof. Step 1(Estimates fromAbove). We can deal with the proof in a way similar to that
for the previous proposition, so we use the same notation. Now Lemma2 implies that

L(a)
s,∞(id : �Mj,i

p0 �→ �
Mj,i
p1 ) � M

1/s
j,i � C2(j+i)

d
s . (50)

So, using (22), (26), (6), and (50) we find that

L(a)
s,∞(P )� �

M∑
m=0

∑
j+i=m

2−�(j�+i�) 2�md
s

� c2

M∑
m=0

2�md( d
s
−�) � c3 2

�dM( 1
s
−�) (51)

for � > � and1
s
> �

d
. Thus

a2dM (P : B0 �→ B1) � c3 2
−dM �

d . (52)
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In the same way we prove that

a2dM (P : B0 �→ B1) � c3 2
−dM �

d (53)

if � < �.
For the operatorQwe have

L(a)
s,∞(Q)� �

∞∑
m=M+1

∑
j+i=m

2−�(j�+i�) 2�md
s

� c2

∞∑
m=M+1

2�md( d
s
−�) � c3 2

�dM( 1
s
−�), (54)

where� = min(�, �) and1
s
<

�
d
. Thus

a2dM (Q : B0 �→ B1) � c3 2
−dM �

d . (55)

Now (52), (53), and (55) give us the estimate from above.
Step 2(Estimates from Below).We can deal with the estimates in a way similar to that in

Step 4of the last proof. If� < � we takeN,S, andT the same as in point (i). Using Lemma
2 we get

C � 2k�a2dk−2(id).

If � < � we should follow the point (ii). �

Remark 14. Once more the proof gives us an estimate for the limiting case� = �. Now
reasoning similar to that in Remark12 leads to the estimate

ak(id) � C� k
− �

d (1+ logk)
�
d
+1+�,

where� > 0.

Proposition 15. Let 1�p0, p1�∞, 1
p̃
= min(�,�)

d
+ 1

p0
, and� �= �. Supposẽp < p1 <

p0�∞. Then

ak

(
id : �q0

(
2j��p0(w�)

) �→ �q1
(
�p1

)) ∼ k−�, (56)

with

� = min(�, �)
d

+ 1

p0
− 1

p1
. (57)

Proof. Step 1(Estimates fromAbove). We only sketch the proof since, once more, we can
use the same reasoning. We put1

p
= 1

p1
− 1

p0
. Now by Lemma3

ak

(
id : �Mj,i

p0 �→ �
Mj,i
p1

)
∼ (

Mj,i − k + 1
)1/p

, k = 1, . . . ,Mj,i . (58)
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In consequence

L(a)
s,∞(id : �Mj,i

p0 �→ �
Mj,i
p1 ) � M

1
s
+ 1

p

j,i ,
1

s
> 0. (59)

So, using (22), (26), (6), and (59), we find that

L(a)
s,∞(P )� �

M∑
m=0

∑
j+i=m

2−�(j�+i�) 2�md( 1
s
+ 1

p
)

� c2

M∑
m=0

2�md( 1
s
+ 1

p
− �

d
) � c3 2

�dM( 1
s
+ 1

p
− �

d
)
, (60)

with � = min(�, �) and1
s
>

�
d
− 1

p
. Thus,

a2dM (P : B0 �→ B1) � c3 2
−dM(

�
d
− 1

p
)
. (61)

For the operatorQwe have

L(a)
s,∞(Q)� �

∞∑
m=M+1

∑
j+i=m

2−�(j�+i�) 2�md( 1
s
+ 1

p
)

� c2

∞∑
m=M+1

2�md( 1
s
+ 1

p
− �

d
) � c3 2

�dM( 1
s
+ 1

p
− �

d
) (62)

if 0 < 1
s
<

�
d
− 1

p
. Suchscan always be taken since by the assumptions1

p
<

�
d
. Thus

a2dM (Q : B0 �→ B1) � c3 2
−dM(

�
d
− 1

p
)
. (63)

Now (61) and (63) give us the estimate from above.
Step 2(Estimates from Below). Once more we follow Step 4 of the proof of Proposition

11, now using (58) instead of Lemma 2.�

Remark 16. For the limiting case� = � we now get the estimate

ak(id) � C� k
− �

d
+ 1

p0
− 1

p1 (1+ logk)
�
d
− 1

p0
+ 1

p1
+1+�

,

where� > 0.

3. Approximation numbers of Sobolev embeddings

We shall letAs
p,q(R

d , w�) (As
p,q(R

d)) stand for eitherBs
p,q(R

d , w�) (Bs
p,q(R

d)) or

F s
p,q(R

d , w�) (F s
p,q(R

d)), with the understanding that for theF-spaces we must havep <

∞. The main result of the paper reads as follows.
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Theorem 17. Let 1�p0, p1�∞, 1�q0, q1�∞, and−∞ < s1 < s0 < ∞. Let � > 0,
� = s0 − s1− d( 1

p0
− 1

p1
) > 0,and 1

p̃
= min(�,�)

d
+ 1

p0
.We assume that

(a) 1�p0�p1�∞ or p̃ < p1 < p0�∞,
(b) � �= �.

Letak denote the kth approximation number of the Sobolev embedding

As0
p0,q0

(Rd , w�) ↪→ As1
p1,q1

(Rd).

Then

ak ∼ k−�,

where

(i) � = min(�,�)
d

if 1�p0�p1�2 or 2�p0�p1�∞,

(ii) � = min(�,�)
d
+ 1

p0
− 1

p1
if p̃ < p1 < p0�∞,

(iii) � = min(�,�)
d
+ 1

2 − 1
min(p′0,p1)

if 1�p0 < 2 < p1�∞, (p0, p1) �= (1,∞) and

min(�, �) > d
min(p′0,p1)

,

(iv) � = min(�,�)
d
· min(p′0,p1)

2 if 1�p0 < 2< p1�∞, (p0, p1) �= (1,∞) andmin(�, �)�
d

min(p′0,p1)
.

Proof. If bothAs0
p0,q0(R

d , w�) andA
s1
p1,q1(R

d) are Besov spaces then the assertions follow
from Theorem8 and Proposition 11, Proposition 13, or Proposition 15, respectively.
The general upper estimates follow from the Besov case, the multiplicativity property of

approximation numbers, and elementary embeddings

As0
p0,q0

(Rd , w�) ↪→ Bs0
p0,∞(R

d , w�) ↪→ B
s1
p1,1

(Rd) ↪→ As1
p1,q1

(Rd).

To prove lower estimates one should consider the following embeddings:

B
s0
p0,1

(Rd , w�) ↪→ As0
p0,q0

(Rd , w�) ↪→ As1
p1,q1

(Rd) ↪→ Bs1
p1,∞(R

d). �

Remark 18. Let all the assumption of the theorem hold except assumption(b). If � = �
then for any� > 0 there exist constantsc > 0 andC� > 0 such that

c k−� � ak � C� k
−� (1+ logk)�+1+�. (64)

The only exact estimate, known for the limiting case, was proved by Mynbaev and
Otel’baev for Bessel potential spaces. In our notation their result reads

ak

(
F
s0
p0,2

(Rd , w�) ↪→ F 0
p1,2(R

d)
)
∼ k−

�
d (1+ logk)

�
d ,

where

s0 > 0 , 1< p0�p1�2 , 2�p0�p1 <∞;
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cf. [20,V, Section 3,Theorem9]. Someother estimates, not exact but better then the estimate
(64), can be found in [12]. So the only advantage of (64) is that the estimates holds with no
additional assumption.

At the endwe use this theorem to fill the only gap in estimation of approximation numbers
of Sobolev embeddings on bounded domains.
Let� ⊂ Rd be a bounded domain withC∞ boundary. LetAs

p,q(�), be the Besov space
or the Triebel–Lizorkin space on� defined by restrictions; cf. [8, Chap. 2.5]; [26, Chap.
4]; [27, Chap. 3].

Corollary 19. Letak denote the kth approximation number of the Sobolev embedding

As0
p0,q0

(�) ↪→ As1
p1,q1

(�).

Then

ak � C k−�,

where

(i) � = �
d
if 1�p0�p1�2 or 2�p0�p1�∞,

(ii) � = �
d
+ 1

p0
− 1

p1
if p̃�p1 < p0�∞,

(iii) � = �
d
+1

2− 1
min(p′0,p1)

if 1�p0<2<p1�∞, (p0, p1)�=(1,∞) and�> d
min(p′0,p1)

,

(iv) � = �
d
· min(p′0,p1)

2 if 1�p0 < 2< p1�∞, (p0, p1) �= (1,∞) and�� d
min(p′0,p1)

.

Proof. Wechoose� > �.We prove the corollary for Besov spaces; the rest is a consequence
of elementary embeddings. LetRf = f |� be a restriction operator. It is a bounded linear
operator fromBs

p,q(R
d) ontoBs

p,q(�). There exist an extension bounded linear operator

S : Bs
p,q(�) �→ Bs

p,q(R
d) such thatRS = id; cf. Theorem 3.3.4 in[27]. LetS�f = w−1� Sf

andR�f = w�f |�. We have the following commutative diagram:

B
s0
p0,q0(�)

S�−−−−→ B
s0
p0,q0(R

d , w�)

id

� �Id

B
s1
p1,q1(�)

R�←−−−− B
s1
p1,q1(R

d)

The operatorsS� andR� are bounded andR�S� = id. In consequenceak(id)� C ak(Id).
Now the corollary follows immediately from the previous theorem.�

Almost all assertions of the last corollary are known. Points (i)–(iii) were proved by Ed-
munds andTriebel; cf.[8, Theorem 3.3.4]. Point (iv) was proved by Caetanowith additional
assumption that� < d

min(p′0,p1)
; cf. [3]. To the best of our knowledge our proof is the first
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that also covers the case� = d
min(p′0,p1)

. Since the estimates from below are known, cf.[8,

Theorem 3.3.4], we have the following corollary.

Corollary 20. Let1�p0 < 2< p1�∞, (p0, p1) �= (1,∞), and� = d
min(p′0,p1)

. Then

ak ∼ k−1/2.

Remark added in proof. (1) The method presented in the paper can be used also in the
quasi-Banach case, 0< p < 1 or 0 < q < 1. The quasi-Banach version of Lemma2
was proved in [8, Theorem 3.2.2], with the additional assumptionp1 <∞ if p0 < 1. Also
Lemma 3 can be extended to the quasi-Banach spaces with 0< p0 < p1�∞. The proof
of the quasi-Banach case is the same as that for Banach spaces; cf. [21, Proposition 2.9.8].
The wavelet characterization of weighted Besov spaces with 0< p�∞ and 0< q�∞
was recently proved by Haroske and Triebel in [14]. In the end the technique of operator
ideal quasi-norms also works for operators acting between quasi-normed spaces. This fact
was used recently in [17]. So we can repeat the calculations from Section 2 withp0 < 1,
p1 <∞, and 0< q0, q1�∞. In consequence Theorem 17 also holds in the quasi-Banach
case withp1 <∞ andp′0 = ∞ if 0 < p0 < 1.

(2) The technique also works for other type of weights. In particular, we have recently
proved the following theorem.

Theorem 21. Let 0 < p0, p1�∞, 0 < q0, q1�∞, and−∞ < s1 < s0 < ∞. Let
v�(x) =

(
1+ log(1+|x|2))� , x ∈ Rd , and� > 0. If s0− s1−d( 1

p0
− 1

p1
) > 0andp0�p1

then the embedding

As0
p0,q0

(Rd , v�) ↪→ As1
p1,q1

(Rd)

is compact and

ak

(
As0
p0,q0

(Rd , v�) ↪→ As1
p1,q1

(Rd)
)
∼ v�(k)

−1.
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